Optimization of a VOC Sensor with a Bilayered Diaphragm Using FBAR as Strain Sensing Elements
نویسندگان
چکیده
Film bulk acoustic resonators (FBARs) are widely applied in mass bio-sensing and pressure sensors, owing to their extreme sensitivity and integration ability, and ability to miniaturize circuits. A volatile organic compound (VOC) sensor with a polymer-coated diaphragm, using FBARs as a strain sensing element is proposed and optimized. This vapor sensor is based on organic vapor-induced changes of mechanical deformation of the micro-diaphragm. The four FBARs are located at the edge of the bi-layer diaphragm comprising silicon nitride and silicon oxide for strain extraction. In this work, the strain distribution of the FBAR area under vapor loads is obtained using the finite element analysis (FEA) and the response frequency changes of the FBARs under vapor loads are obtained based on both the first-principle methods to deduce the elastic coefficient variation of aluminum nitride film in FBARs under the bending stresses and the Mason equivalent circuit model of the sensor using ADS software. Finally, optimizations are performed on both the bilayered diaphragm structure and sensing film. The diaphragm with a 0.7 μm silicon nitride layer and a 0.5 μm silicon oxide layer are considered to be the optimized design. The optimal coverage area of the sensing film for the diaphragm is around 0.8.
منابع مشابه
Optimization of NEMS pressure sensors with a multilayered diaphragm using silicon nanowires as piezoresistive sensing elements
A pressure sensor with a 200 μm diaphragm using silicon nanowires (SiNWs) as a piezoresistive sensing element is developed and optimized. The SiNWs are embedded in a multilayered diaphragm structure comprising silicon nitride (SiNx) and silicon oxide (SiO2). Optimizations were performed on both SiNWs and the diaphragm structure. The diaphragm with a 1.2 μm SiNx layer is considered to be an opti...
متن کاملAccurate Model of Capacitance for MEMS Sensors using Corrugated Diaphragm with Residual Stress
In this paper we present a new model for calculating the capacitance of MEMS sensor with corrugated diaphragm. In this work the effect of residual stress is considered on deflection of diaphragm and capacitance of sensor. First, a new analytical analyzes have been carried out to derive mathematic expressions for central deflection of corrugated diaphragm and its relationship with residual stres...
متن کاملDesign of High Sensitivity and Linearity Microelectromechanical Systems Capacitive Tire Pressure Sensor using Stepped Membrane
This paper is focused on a novel design of stepped diaphragm for MEMS capacitive pressure sensor used in tire pressure monitoring system. The structure of sensor diaphragm plays a key role for determining the sensitivity of the sensor and the non-linearity of the output.First the structures of two capacitive pressure sensors with clamped square flatdiaphragms, with different thicknesses are inv...
متن کاملDual-Mode Gas Sensor Composed of a Silicon Nanoribbon Field Effect Transistor and a Bulk Acoustic Wave Resonator: A Case Study in Freons
In this paper, we develop a novel dual-mode gas sensor system which comprises a silicon nanoribbon field effect transistor (Si-NR FET) and a film bulk acoustic resonator (FBAR). We investigate their sensing characteristics using polar and nonpolar organic compounds, and demonstrate that polarity has a significant effect on the response of the Si-NR FET sensor, and only a minor effect on the FBA...
متن کاملDesign and development of ShrewdShoe, a smart pressure sensitive wearable platform
This study introduces a wearable in-shoe system for real-time monitoring and measurement of the plantar pressure distribution of the foot using eleven sensing elements. The sensing elements utilized in ShrewdShoe have been designed in an innovative way, they are based on a barometric pressure sensor covered with a silicon coating. The presented sensing element has great linearity up to 300...
متن کامل